วันอาทิตย์ที่ 26 มกราคม พ.ศ. 2557

ความแตกต่างระหว่าง Definition, Theorem, Lemma, Corollary, Proposition, Conjecture, Claim, Axiom/Postulate, Identity, Paradox

หลากหลายคำนิยามทางคณิตศาสตร์บางครั้งก็เกิดความสงสัยระหว่างคำพวกนี้ ว่าใช้แตกต่างกันอย่างไร และแต่ละคำมีระดับความสำคัญอย่างไร และลองหาคำตอบ ได้คำตอบมาถูกผิดอย่างไรก็ ขอ อภัยด้วยครับ

Definition - เป็นการอธิบายความจริง หรือ เท็จของ ของคำนิยามทางคณิตศาสตร์ โดยจะอธิบายคุณสมบัติทั้งหมดของคำนั้นที่เป็นจริง

Theorem - เป็นประโยคทางคณิตสาสตร์ที่อธิบายด้วยการให้เหตุผลที่เข้มงวด ในบทความทางคณิตศาสตร์ Theorem จะสงวนเอาไว้อธิบายคำตอบที่มีความสำคัญ

Lemma - เป็นคำตอบที่มีความสำคัญรองลงมาเพื่อใช้ในการช่วยพิสูจน์ Theorem บางครั้งอาจจะใช้ Lemma ในการพิสูจน์หรืออธิบาย Lemma ได้เหมือนกัน

Corollary - เป็นผลลัพธ์ที่พิสูจน์อย่างเข้มงวดโดยใช้ Theorem

Proposition - เป็นการพิสุจน์ที่ได้คำตอบน่าสนใจ แต่ทั่วไปแล้วจะให้ความสำคัญน้อยกว่า Theorem

Conjecture - เป็นประโยคสมการที่ไม่สามารถพิสูจน์ได้ แต่เชื่อว่าเป็นจริง

Claim - การได้คำตอบหลังจากมีการพิสูจน์แล้วบางคร้งใช้เหมือน Lemma ที่ไม่ค่อยเป็นทางการ

Axiom/Postulate - เป็นการอ้างสมมติฐานที่เชื่อว่าเป็นจริง โดยไม่มีการพิสูจน์ เป็นการสร้างฐานความจริงที่พิสูจน์ได้จาก Theorem

Identity - เป็นคณิตศาสตร์ที่อธิบายความเท่ากันของตัวแปร

Paradox - สามารถใช้แสดงความจริง หรือ เท็จทั้งคู่ของ Axiom และ Definition และสามารถใช้อธิบายความขัดแข้งของช่องโหว่ Theorem ได้



จะเห็นว่าระดับการอธิบาย คำศัพท์ทางคณิตศาสตร์ นั้นมีความสำคัญที่ความแตกต่างกัน ต่อไป ก็คงเลือกใช้ได้ถูกและใกล้เคียงกับระดับความสำคัญของคำศัพท์ได้ แล้ว



ขอบคุณ
http://divisbyzero.files.wordpress.com/2008/09/thcorlem.pdf

ไม่มีความคิดเห็น:

แสดงความคิดเห็น